skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kohler, Brooke L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The disposable soma theory posits that organisms allocate limited resources between reproduction, maintenance, and growth, resulting in trade-offs, particularly as they age. In this study, we examined age-related reproductive senescence in Megachile rotundata, a solitary bee and important agricultural pollinator. We hypothesized that, similarly to social bees, aging females would show declines in foraging behavior and reproductive fitness. Contrary to this hypothesis, we found no evidence of reproductive senescence in M. rotundata within the timeframe observed. Instead, older females increased their foraging rate, leading to larger provisions and offspring. We also observed that older bees exhibited improved foraging efficiency, likely due to learning and muscle physiology changes. Furthermore, ovarian development showed no decline with age, indicating that reproductive capacity remains stable throughout the observed timeframe. Our results challenge conventional assumptions about reproductive senescence in solitary bees and suggest that older M. rotundata may contribute to more efficient pollination, with implications for pollinator management. This study provides new insights into the aging process in solitary bees, emphasizing the need for further research into the mechanisms behind age-related behavioral and reproductive changes. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026